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ABSTRACT 
 

In this context, a damage model is a mathematical algorithm that is used to predict if and when in a 

given loading history a structure will fail by ductile fracture.  Increments in a damage parameter are related to 

strain increments and state of stress.  The damage model would operate as part of a numerical simulation, or 

separately on an output file.  A scale effect in ductile fracture is widely recognized from test data, where a large 

structure tends to fail at lower strain than a smaller structure that is geometrically similar and of the same 

material.  Most damage models are not scale sensitive, and when they are calibrated to data from small 

laboratory specimens, they will tend to over-predict the performance (i.e., energy absorbing capability) of a 

larger structure. Another factor is scatter in test results even when specimens are made with care to be as 

identical as possible.  Both of these factors are addressed in the proposed statistics-based damage model. Scale 

effects and scatter become part of the actual material behavior, rather than perceived effects of variability in 

specimen preparation or test procedures.  In addition, it is found that the statistical approach leads to improved 

calibration of the model for the effects of triaxiality and Lode parameter. 

 

 

INTRODUCTION 
 

Damage models are typically used to predict where in a 

given loading history a structure will fail.  These models can 

be useful in ballistic and blast loading simulations.  Some 

issues with widely used damage models are that they do not 

exhibit two phenomena seen consistently in test data; 

namely, scale effects and scatter.  The scale effect is where a 

large structure tends to fail at lower strain than a smaller 

structure that is geometrically similar and of the same 

material.  Test results of strain to failure typically show 

significant scatter, even when specimens are made with care 

to be as identical as possible in material and geometry. 

 

When most widely used damage models are calibrated to 

data from laboratory specimens that are much smaller than a 

given structure, the damage models tend to over-predict the 

performance (i.e., energy absorbing capability) of that 

structure.  A partial solution has been to use test data from 

large scale tests, but these are more difficult, expensive, and 

time consuming to perform than laboratory scale tests.  

Other approaches include use of strain gradients and length 

scales.  None of these address the issue of scatter.  We 

believe that we have found a better way to address these 

issues, by using a statistics-based damage model.  It can be 

calibrated using data from laboratory scale tests, with 

perhaps some confirmatory data from larger scale tests. 

 

The method is based on Weibull Statistics, with strain-to-

failure as the independent variable.  Damage is expressed in 

terms of a Probability of Survival (PS), which starts at a 

value of 1 and decreases as plastic strain is accumulated.  A 

scale factor appears in the formulation that increases with 

material volume and with the variability of the failure data, 

so for a given stress-strain history, a larger volume will have 

a lower value of  PS .  Scale effects and scatter become part 

of the actual material behavior, rather than perceived effects 

of variability in specimen preparation or test procedures.  
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Other terms account for triaxiality and Lode angle.  A 

statistical analog to the Johnson-Cook damage model is 

proposed. 

 

Several examples are given that use published data of 

strain to failure vs. specimen geometry.  It is shown that 

calibration for triaxiality and Lode angle make more sense 

when specimen geometry and gage volume are taken into 

account. 

 

This work deals with the interaction of scatter and scale 

effects in ductile fracture through a statistical interpretation 

of the data.  It is distinct from the type of deterministic scale 

effect seen in a body containing a crack, where a failure 

criteria such as energy release rate will be met at a lower 

stress when the scale of the body, and the length of the 

crack, are increased. 

 

In this work, the approximations are made that the stresses 

in the gage volume are uniform, and are based on the initial 

geometry and plastic strain.  It is recognized that calibration 

for FEA will improve when a specimen is modeled using a 

reasonable finite element grid, with incremental updates to 

geometry and plastic strain.  Calibration would involve an 

adjustment of material parameters to minimize a function of 

the difference between test results and numerical results.  

Test results would be a relevant and easily measurable 

quantity, such as failure strain by reduction of area at the 

notch of a tensile specimen. 

 

This paper presents part of the work done by CTC for the 

Naval Surface Warfare Center (Carderock Division) ACMII 

Program.  A viewgraph summary can be accessed using 

reference [1]. 

 

 

START AND FINISH 
 
Before the detailed analysis, it is useful to look at an 

example of a damage model that is currently in wide use, 

and see how our end product looks in comparison.  The 

Johnson-Cook damage model [2] computes increments to a 

damage parameter that are based on strain increment and 

stress state.  Increments are computed and summed 

separately for each element or integration point in a 

structure.  Failure is said to occur when the value of the 

damage parameter at any point in the structure reaches a 

value of 1. 
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D1 through D5 are calibration coefficients, and D is a 

damage parameter.  
pε∆  is an increment in equivalent 

plastic strain. 

 

This is a deterministic model; the structure is intact until the 

criterion is met at any location, and then the structure has 

failed.  It may be calibrated to mean values of samples, or to 

estimates of safe lower limits. 

 

  The statistics-based model has some similarities, but differs 

in that it computes a Probability of Survival (PS), rather than 

a deterministic prediction of failure.  The general form 

(minus the strain rate and temperature terms) is as below in 

equation 2.  It expresses PS for each element of a finite 

element grid, and for the total volume of the structure.  Note 

the terms for element volume V(k).  Also note terms for 

triaxiality (η) and Lode parameter (ξ). 
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KEY ASSUMPTIONS AND APPROXIMATIONS 
 

The material is isotropic, with standard Mises 

incompressible associative plasticity. 

 

No strain rate effect is assumed unless otherwise noted. 

 

For analysis purposes, the gage section of a specimen is 

treated as a single element, with uniform stress and strain. 

 

The stress is calculated using the initial notch geometry and 

a modified Bridgman-type plasticity analysis. 

 

As loading progresses, plastic strain increases, but the stress 

ratios (and thus triaxiality and Lode parameter) do not 

change. 

 

The effective volume of the gage section is calculated using 

the area at the initial notch and the height of the gage 

section. 

 

 

ANALYSIS 
 
Weibull Statistics 
 
This analysis uses the two parameter Weibull distribution 

[3-5].  The physical analogy is a single chain of a number (n) 

of links, which experiences a load (X) that increases until 

one of the links (and so the entire chain) fails.  Each link 

sees the same load, but they all have different strengths.  The 

strength of a link is described by a Probability of Survival 

that is a decreasing function of X, and the Probability of 

Survival of the chain is equal to the product of those values 

for the links. 
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The volume of material in the chain is proportional to n, so 

by analogy, for a body of volume V, 
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Replace X  by stress, and this is the form commonly used 

for failure of ceramics and composites.  Here, plastic strain 

is used in place of X, as the independent variable. 

 

Note that V0 is an arbitrary scaling factor, such as 1 cubic 

inch or 1 mm
3
.  Take care when comparing different samples 

that the same value of V0  is used. 

 

Measurements of X  at failure for a sample of n nominally 

identical specimens can be used to calibrate the equation.  

Results are arranged in ascending order, and a value of PS is 

assigned to each that decreases as the failure strain increases. 
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Linearizing equation 4 by taking natural logarithms of both 

sides twice, and rearranging terms; 
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This is a set of n linear equations, that can be solved for 

optimal values of m and X0  by linear regression.  Using 

terms analogous to those in equation 6; 

 









==

=+=

m

a
Xbm

niXbaY ii

exp,

to1,

0

  (7) 



Proceedings of the 2010 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

A STATISTICS-BASED DAMAGE MODEL THAT ACCOUNTS FOR SCALE EFFECTS 

 

 

Page 4 of 11 

 

 

 

 

(Note that for a given sample size, the range of Y is fixed, 

while the range of X depends on the scatter in the test data.  

When that scatter is small, the slope for  Y  vs.  X  will be 

large, and m will be large.  It can be seen from equation 4, 

and later in equation 30, that the scale effect decreases as m 

increases.) 

 

Next, postulate that there are several samples (nS), the 

specimens within each sample are identical, and between 

samples, they are geometrically similar, but differ by a 

length scale.  (Each sample will have its own gage volume.)  

The samples can have different numbers of specimens.  

Equations 5 and 6 can be written as follows to describe each 

sample: 
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Linearizing as in equation 6 gives 
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Regression solutions for m and X0 can be computed 

separately for each sample, or once for all of the samples 

together. 

 
 

Gage Section Geometry and Stress State  
 
Notched tensile specimens that undergo plastic yield in the 

gage section will generate transverse stresses that are related 

to the curvature at the notch and the normal stress across the 

notch.  These stresses are zero at the free surface, and reach 

a maximum at the center.  Approximate stress solutions for 

both the axisymmetric and plane strain cases are given in 

Bridgman [6].  Numerical solutions by Bao and Wierzbicki 

[7] for axisymmetry and by Gao [8] for plane strain suggest 

a correction factor of 1.4 on the variable part of the 

transverse stress.  The Butterfly geometry is approximated as 

a shear stress added to the plane strain geometry.   

 
Some examples of different notch geometries are shown in 

Figure 1 below.  Note that for a given notch diameter or 

thickness, the approximate gage volume increases as the 

curvature decreases.  For an unnotched specimen, the gage 

volume is determined by a specified gage length.   

 

 

 
 

Figure 1.  Axisymmetric and Plane Strain Specimens with 

Different Notch and Gage Geometries. 
 
 

The details of the plasticity stress analysis can be found in 

Bridgman [6].  What follows is a summary of the results, 

with placement of the numerical factor [7 and 8].  Constant 

value approximations to the stresses will be calculated by 

computing an average over the cross section. 

 

For the axisymmetric case; 
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Average values over the cross section are: 
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Carrying out the integral (CRC #377, [9]): 
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And the triaxiality, with the numerical multiplier, is 
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And in a similar process for plane strain, using Bridgman 

[6], and Gao [8]; 
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So the stresses and triaxiality are   
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The Butterfly geometry is modeled as a plane strain 

geometry, with the load at an angle in the normal-transverse 

plane.  Notch related stresses are due to the normal 

component of the load.  The details of the calculation will 

appear elsewhere [10]. 

 
 

Stress Invariants, Triaxiality, and Lode Parameter 
 
The damage model is a function of the first three stress 

invariants, as defined below.  Note:  A single subscript on 

stress or strain components indicates principal values, and sij 

are deviatoric stresses. 
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Note that the Lode parameter is equal to +1 for 

axisymmetric tension, 0 for plane strain, and -1 for biaxial 

tension. 
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Measures of Plastic Strain 
 

The specimens are cylinders and plates with notches cut in 

to define the gage sections.  The measured variable is 

equivalent plastic strain to failure at the gage section: 
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Adaptation to Plastic Strain 
 
Given the assumptions for the gage volume, equation 2 can 

be written as 
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where the functions of triaxiality and Lode parameter are not 

yet specified.  They will arise later from combinations of 

physical reasoning, numerical results, and calibration to 

physical data. 

 

Start with the simplest case, which is a set of failure strains 

for a sample of nominally identical specimens.  With no 

variation in volume, and since V0 is arbitrary, set V = V0.  

Triaxiality and Lode parameter are also constant.  The 

equation can be written as 
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The Weibull parameters are m and Θε , which can be 

found as in equation 6.  Different samples made from the 

same material will likely show some variation in the Weibull 

modulus m; this variation should diminish as the number of 

specimens in a sample increases. 

 

Next, consider the case where specimens are geometrically 

similar, and differ between samples by a length scale.  Since 

triaxiality and Lode parameter are constant, write equation 

19 as 
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Equivalent terms for analysis of one sample at a time 

(equation 6) are 
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And for combining several samples, 
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When the Weibull parameters are determined, the analysis 

can be compared to the data by drawing lines of strain vs. 

geometric scale (e.g., notch diameter) at constant values of 

PS.  These can be chosen in rough equivalence to  + / -  0, 1, 

and 2 standard deviations. 
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The work of Young, et. al. [11] meets the data 

requirements of this case.  Ductility was measured for 

several samples of notched round bars, all geometrically 

similar, with a different length scale for each sample.  So, if 

L is the diameter at the notch (the notch root diameter), 

 
3*Const. LV =     (25) 
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Their data (points and sample means) vs. notch root 

diameter, plus the lines generated using equation 25, are 

displayed in Figures 2 and 3.  Figure 2 uses the Weibull 

parameters generated by the sample with the largest root 

diameter.  It is interesting that this one sample (with only 5 

data points) is so predictive of the other data.  The Weibull 

moduli in Figure 3 were calculated from the combined 

samples, as per equation 9. 
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Figure 2.  Analysis for Data of Young, et. al., Effect of 

Scale.  Notched Bars, Geometrically Similar.  Key on Data 

from Largest Specimens.  Lines are for PS = 0.023, 0.16, 0.5, 

0.84, and 0.977 
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Figure 3.  Analysis for Data of Young, et. al.  Using All of 

the Data.  Lines are for PS = 0.023, 0.16, 0.5, 0.84, and 0.977 

 

 

As shown by equations 12 and 15, triaxiality is determined 

by the ratio (a / R).  The effect of triaxiality on ductility is 

assumed to be an exponential decay, as shown in equation 2.  

In order to calibrate the equation, data at several different 

values of triaxiality, with constant Lode parameter, is 

required.  This can be done by using round tensile bars with 

a different notch profile for each sample.  As shown below, 

the process requires a fixed value of the Weibull modulus m, 

which can be an average of the values for each sample.  

From equations 19 and 2, 
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which can be linearized to  
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The data presented by Besson, et. al. [12] contains both 

types of data discussed so far: geometrically similar with 
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varying scale, and varying triaxiality.  Strain to failure vs. 

initial triaxiality for six samples is shown in Figure 4.  The 

three that are geometrically similar have the same triaxiality, 

but due to their different length scales have different mean 

values of strain to failure. 
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Figure 4.  Data from Besson (2000).  Small Circles are 

Data Points, Large Circles are Sample Means. 

 

 

Equation 26 can be rewritten as follows; 
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This suggests that if the formulation is correct, 4fε  can be 

considered as a volume adjusted strain, and using it should 

close the gap between the three mean values at the same 

triaxiality in Figure 4.  This is tested in Figure 5, where the 

data points are replotted as volume adjusted strain, and lines 

of constant PS are drawn according to  
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Note that the three mean values are drawn closer together, 

and that the lines are consistent with the data. 

 

If a form can be written for ( )ξ2f , it should be possible to 

directly compare data for different Lode parameters.  

Equation 32 is a further revision of equation 26; 
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Figure 5.  Volume Adjusted Strain vs. Triaxiality. 
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An approximate form of ( )ξ2f  was obtained by fitting an 

equation to some numerical data.  In a recent paper, Gao, et. 

al. [13] presented a finite element analysis of a unit cell with 

a void at the center, subject to various stress ratios, and an 

instability criterion related to plastic flow.  The variation of 

failure strain with Lode parameter is consistent with the 

following approximation: 

 

( )
ξ

ξ
+

=
2

3
2f     (33) 
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(Other assumptions could lead to different results, such as a 

constant value of 1 (no dependence on Lode parameter). 

 
Data with variation in specimen type, and triaxiality and 

Lode parameter, is presented by Mae et. al. [14].  Specimen 

types include Butterfly, and notched and smooth tensile bars.  

Specimen failures are matched to finite element calculations, 

and data reported as plastic strain and triaxiality at a location 

close to the observed failure.  See Figure 6.  Note the 

overlap between specimen types, and the somewhat 

uncertain dependence of strain to failure on triaxiality.   

 

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

 Stress Triaxiality (eta) 

 E
ff

e
c
ti
v
e
 P

la
s
ti
c
 S

tr
a
in

 t
o
 F

ra
c
tu

re
 

STATISTICAL TREATMENT OF STRAIN TO FAILURE

Source: Materials Science and Engineering A 459 (2007) 156-166

Figure 24 (Mae, Teng, Bai, Wierzbicki; M.I.T.)

 
 

FIGURE 6.  X = Axisymmetric, O = Butterfly.  Failure 

Point Strain vs. Failure Point Triaxiality. 

 

 

Recast the data as follows:  Use the initial triaxiality as 

calculated from the specimen geometry.  Keep the reported 

strain data; assume it is roughly proportional to what would 

result using reduction of area.  Adjust the strains for gage 

volume and Lode parameter as per equations 32 and 33.  

Because the samples do not contain enough points for valid 

statistical calculations, try several values of Weibull 

modulus and choose one that gives sensible results.  

Compute lines of 5fε at constant PS using equation 32.  

These results are presented in Figure 7.  Note the improved 

consistency. 

 

It is generally expected that increased strain rate results in 

decreased ductility.  Some confusion on this issue was 

expressed in regard to measurements on Weldox 460 E steel 

[15-17].  The authors state that results for unnotched round 

bars showed the expected strain rate response (2001), while 

those for notched bars did not (2003).  Data is given for 

ductility vs. the maximum initial triaxiality (at the centerline 

of notched bars); average values only for low (quasi-static) 

strain rate, and data points for higher strain rates.  High 

strain rates were achieved using Hopkinson bars that were 

preloaded, and then released into the specimens.  The data is 

shown in Figures 8 and 9: 
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STATISTICAL TREATMENT OF STRAIN TO FAILURE

Source: Materials Science and Engineering A 459 (2007) 156-166

Figure 24, modified with single element approximation

Strain adjusted for volume and Lode angle:  f2 = sqrt(3/(2 + xi))

mw = 7 C = 2.5106 e0 = 0.4671

 
 

Figure 7.  Modified Strain vs. Initial Triaxiality.  Lines are 

for PS = 0.023, 0.16, 0.5, 0.84, and 0.977 
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Figure 8.  Strain Rate and Triaxiality.  Several Strain 

Rates.  Averages of  Data Points at Each Condition. 
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Figure 9.  Notched Specimens Only.  Several Strain Rates.  

Data Points and Averages. 

 

A plausible explanation was found when the specimen 

geometries were examined.  For the notched specimens, the 

notch diameter of the quasi-static specimens was twice that 

of the dynamic specimens, so the gage volume was approx. 

8 times larger.  This was combined with an assumed Weibull 

modulus value of 15, and volume corrected values of the 

strains were calculated.  See Figure 10.  Note the separation 

between the high and low strain rate data, with the high 

strain rate data having the expected lower strain to failure 

results. 
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Figure 10.  Strain Rate and Triaxiality.  Average Values of 

Volume Corrected Strains vs. Initial Triaxiality.  Volume 

Correction Uses Weibull Modulus  = 15. 

 

DISCUSSION / SUMMARY 
 

A statistics-based damage model has been proposed that 

accounts for both scale effects and scatter.  These factors 

become part of the material behavior, and are not related to 

testing or specimen preparation.   Several cases from the 

literature were examined.  The new damage model is shown 

to resolve some questionable and inconsistent patterns in the 

data, notably those related to effects of triaxiality on limit 

strain. 

 

It is suggested that future test programs in this area use 

sample numbers higher than was found in these examples.  

At least 12 specimens per sample are recommended.  Even 

with sample sizes smaller than ideal, useful results were 

obtained. 

 

It is recognized that the statistical nature of limit strains, 

and the resulting connection to scale effects, has been the 

subject of other work.  Kieselbach and Krieg [18] apply 

Weibull statistics separately to limit strain data for several 

groups of identical and geometrically similar specimens.  

Dorum et. al. [19] use a volume term and Weibull modulus 

to alter the statistical distribution failure parameters applied 

to integration points in a finite element model of a test 

specimen. 

 

A program report is in preparation [10]. 
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